212 research outputs found

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    A second‐order face‐centred finite volume method on general meshes with automatic mesh adaptation

    Get PDF
    A second‐order face‐centred finite volume strategy on general meshes is proposed. The method uses a mixed formulation in which a constant approximation of the unknown is computed on the faces of the mesh. Such information is then used to solve a set of problems, independent cell‐by‐cell, to retrieve the local values of the solution and its gradient. The main novelty of this approach is the introduction of a new basis function, utilised for the linear approximation of the primal variable in each cell. Contrary to the commonly used nodal basis, the proposed basis is suitable for computations on general meshes, including meshes with different cell types. The resulting approach provides second‐order accuracy for the solution and first‐order for its gradient, without the need of reconstruction procedures, is robust in the incompressible limit and insensitive to cell distortion and stretching. The second‐order accuracy of the solution is exploited to devise an automatic mesh adaptivity strategy. An efficient error indicator is obtained from the computation of one extra local problem, independent cell‐by‐cell, and is used to drive mesh adaptivity. Numerical examples illustrating the approximation properties of the method and of the mesh adaptivity procedure are presented. The potential of the proposed method with automatic mesh adaptation is demonstrated in the context of microfluidics

    Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++

    Get PDF
    In this paper, we propose a mathematical model to describe the functioning of a bioreactor landfill, that is a waste management facility in which biodegradable waste is used to generate methane. The simulation of a bioreactor landfill is a very complex multiphysics problem in which bacteria catalyze a chemical reaction that starting from organic carbon leads to the production of methane, carbon dioxide and water. The resulting model features a heat equation coupled with a non-linear reaction equation describing the chemical phenomena under analysis and several advection and advection-diffusion equations modeling multiphase flows inside a porous environment representing the biodegradable waste. A framework for the approximation of the model is implemented using Feel++, a C++ open-source library to solve Partial Differential Equations. Some heuristic considerations on the quantitative values of the parameters in the model are discussed and preliminary numerical simulations are presented

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    A face-centred finite volume method for second-order elliptic problems

    Get PDF
    This work proposes a novel finite volume paradigm, the face-centred finite volume (FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in 2D) to construct locally-conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin (HDG) formulation with constant degree of approximation, thus inheriting the convergence properties of the classical HDG. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element-by-element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived and numerical evidence of optimal convergence in 2D and 3D is provided. Numerical examples are presented to illustrate the accuracy, efficiency and robustness of the proposed methodology. The results show that, contrary to other FV methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy and robustness using simplicial elements, facilitating its application to problems involving complex geometries in 3D

    Benchmarking the face-centred finite volume method for compressible laminar flows

    Get PDF
    Purpose: This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks. Design/methodology/approach: The work presents a detailed comparison with reference solutions published in the literature -- when available -- and numerical results computed using a commercial cell-centred finite volume software. Findings: The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%. Originality/value: The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.Comment: 39 pages, 18 figures, 12 table

    Hybrid coupling of CG and HDG discretizations based on Nitsche’s method

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computational mechanics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00466-019-01770-8A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.Peer ReviewedPostprint (author's final draft

    An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition

    Full text link
    A non-intrusive proper generalized decomposition (PGD) strategy, coupled with an overlapping domain decomposition (DD) method, is proposed to efficiently construct surrogate models of parametric linear elliptic problems. A parametric multi-domain formulation is presented, with local subproblems featuring arbitrary Dirichlet interface conditions represented through the traces of the finite element functions used for spatial discretization at the subdomain level, with no need for additional auxiliary basis functions. The linearity of the operator is exploited to devise low-dimensional problems with only few active boundary parameters. An overlapping Schwarz method is used to glue the local surrogate models, solving a linear system for the nodal values of the parametric solution at the interfaces, without introducing Lagrange multipliers to enforce the continuity in the overlapping region. The proposed DD-PGD methodology relies on a fully algebraic formulation allowing for real-time computation based on the efficient interpolation of the local surrogate models in the parametric space, with no additional problems to be solved during the execution of the Schwarz algorithm. Numerical results for parametric diffusion and convection-diffusion problems are presented to showcase the accuracy of the DD-PGD approach, its robustness in different regimes and its superior performance with respect to standard high-fidelity DD methods

    Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows

    Get PDF
    This paper proposes a novel computational framework for the solution of geometrically parametrised flow problems governed by the Stokes equation. The proposed method uses a high-order hybridisable discontinuous Galerkin formulation and the proper generalised decomposition rationale to construct an off-line solution for a given set of geometric parameters. The generalised solution contains the information for all the geometric parameters in a user-defined range and it can be used to compute sensitivities. The proposed approach circumvents many of the weaknesses of other approaches based on the proper generalised decomposition for computing generalised solutions of geometrically parametrised problems. Four numerical examples show the optimal mesh convergence properties of the proposed method and demonstrate its applicability in two and three dimensions, with particular emphasis on parametrised flows in microfluidics

    A superconvergent hybridisable discontinuous Galerkin method for linear elasticity

    Get PDF
    The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation for both the primal and mixed variables is presented. The key feature of the method is the strong imposition of the symmetry of the stress tensor by means of the well known and extensively used Voigt notation, circumventing the use of complex mathematical concepts to enforce the symmetry of the stress tensor either weakly or strongly. A novel procedure to construct element by element a superconvergent postprocessed displacement is proposed. Contrary to other hybridisable discontinuous Galerkin formulations, the methodology proposed here is able to produce a superconvergent displacement field for low-order approximations. The resulting method is robust and locking-free in the nearly incompressible limit. An extensive set of numerical examples is utilised to provide evidence of the optimality of the method and its superconvergent properties in two and three dimensions and for different element type
    corecore